Recent Advances in Non-Enzymatic Electrochemical Sensors for Glyphosate Detection: A Review
DOI:
https://doi.org/10.31305/rrijm.2024.v09.n04.006Keywords:
Glyphosate, Nonenzymatic Sensor, Electrochemical Detection, Electrode modifierAbstract
Glyphosate (GLY) is the most widely used organophosphorus pesticides globally with application in shielding crops against perennial and annual the weeds, domestic garden and agriculture. It is recognized for its toxicological harm and is implicated in potential connections with human carcinogenesis. Generally, glyphosate is considered to be less toxic but excessive use leads to pollute soil, food and water. Furthermore, it strongly effects the unicellular and multicellular organism. Therefore, there is urgent need to develop specific, accurate, online, and sensitive methods for detection of glyphosate. The present review is focused on recent advances in developing non-enzymatic sensors for glyphosate detection. Non-enzymatic electrochemical sensors have emerged as promising alternatives for glyphosate detection, offering advantages such as high sensitivity, selectivity, and rapid response. The electrodes were modified with metals, carbon materials, metal organic framework and molecular imprinted polymers using various electrochemical techniques. Execution, benefits, linear range, detection limit and limitations of the modified sensors for determination of glyphosate are reviewed thoroughly.
References
P .Butmee, G .Tumcharern, C .Songsiriritthigul, Analytical and Bioanalytical Chemistry, (2021), 413, 5859–5869.
LP. Agostini, RS. Dettogni, RS. Dos Reis, E Stur, EVW Dos Santos, DP. Ventorim , F M. Garcia , RC. Cardoso, JB. Graceli , ID. Louro, Science of the Total Environment, (2020), 705, 135808.
I. Heap, SO. Duke, Pest Management Science, (2018), 74, 1040–1049.
Athanasios Valavanidis, Sicentific Reviews, (2018), 1, 14.
Li, Q., M. J. Lambrechts, Q. Zhang, S. Liu, D. Ge, R. Yin, M. Xi, and Z. You, Drug Design, Development and Therapy, (2013), 7, 635 –43.
T. Undabeytia, E. Morillo, C. Maqueda, Journal of Agricultural and Food Chemistry, (2002), 50, 1918–1921.
GS. Jacob, JR. Garbow, LE. Hallas, NM. Kimack, GM. Kishore, J. Schaefer, Applied and Environmental Microbiology, (1988), 54, 2953–2958.
A. Van Bruggen, MM. He, K. Shin, V. Mai, KC. Jeong, MR. Finckh, JG. Morris Jr, Science of the Total Environment, (2018), 617, 255–268.
JP. Myers, MN. Antoniou, B. Blumberg, L. Carroll, T. Colborn, LG. Everett, M. Hansen, PJ. Landrigan, BP. Lanphear, R. Mesnage, LN. Vandenberg, FSV. Saal, WV. Welshons, CM. Benbrook, Environmental Health, (2016), 15, 1–13.
L. Wang , Y. Bi, J. Hou, H. Li, Y. Xu ,B. Wang, Talanta, (2016), 160, 268–75.
Martha E. Richmond, Journal of Environmental Studies and Sciences, (2018), 8, 416-434.
PM. Gil, N. Laguarda-Miro , JS. Camino JS, RM. Peris, Talanta, (2013), 115, 702–5.
L. Sun, D. Kong, WJ. Gu, X. Guo, W. Tao, Z. Shan, Y. Wang, N. Wang, Journal of Chromatography A, (2017),1502,8–13
J. Ding, H. Guo, W. Liu, W. Zhang, J-W. Wang, Journal of Science Applied Biomed,(2015) ,3, 88–95.
B. Cartigny, N. Azaroual, M. Imbenotte, D. Mathieu , G. Vermeersch, JP. Goullé, M. Lhermitte Forensic Science International, (2004), 143, 141–145.
P. Zhaoa, M. Yana, C. Zhanga, R. Penga, D. Maa, J. Yu, Spectrochim Acta Part A: Molecular Biomolecular Spectroscopy, (2011) , 78, 1482–1486.
H. Torul, IH. Boyaci, U. Tamer, FABAD Journal of Pharmaceutical Science. (2010), 35,179–184.
Y. Liao, JM. Berthion, I. Colet, M. Merlo, A. Nougad`ere, R.Hu, Journal of Chromatography A, (2018), 1549, 31–38.
HH. See, PC. Hauser, MM. Sanagi, WAW. Ibrahim, Journal of Chromatography A, (2010), 1217, 5832–5838.
AA. Selvi, MA. Sreenivasa, HK. Manonmani, Food and Agriculture Immunology, (2011), 22, 217–228.
W. Zhang, Y. Feng, L. Ma, J. An, H. Zhang, M. Cao, H. Zhu, W. Kang, K. Lian, Journal of Chromatograph A, (2018), 1589, 116–121.
S. Wang, B. Liu, D. Yuan, J. Ma, Talanta, (2016), 161, 700–706.
S.M. Oja, M. Wood, B. Zhang, Analytical Chemistry, (2013), 85, 473–486.
A. Daňhel, JC. Moreira, S. Jacob, J. Barek, J. Collection of Czechoslovak Chemical Communications, (2011), 76, 1263–1275.
SC. dos Santos, A. Galli, ML. Felsner, KC. Justi, Revista Virtual de Quimica, (2014), 6, 866–883.
JS. Noori, M. Dimaki, J. Mortensen, WE. Svendsen, Sensors, (2018), 18, 2961.
F. Zouaoui, S. Bourouina-Bacha, M. Bourouina, A. Alcacer, J. Bausells, N. Jaffrezic-Renault, N. Zine, A. Errachid, Chemosensors, (2020b), 8, 104.
MH. Do, A. Florea, C. Farre, A. Bonhomme, F. Bessueille, F. Vocanson, NT. Tran-Thi, N. Jaffrezic-Renault, International Journal of Environmental Analytical Chemistry, (2015), 95, 1489–1501.
V. Rahemi, JMPJ. Garrido, F. Borges, CMA. Brett, EMPJ. Garrido, Electroanalysis, (2013), 25, 2360–2366.
A. Khenifi, Z. Derriche, C. Forano, V. Prevot, C. Mousty, E. Scavetta, B. Ballarin, L. Guadagnini, D. Tonelli, Analytica Chimca Acta, (2009), 654, 97–102.
MB. Gholivand, A. Akbari, L. Norozi, Sensors and Actuators B: Chemicals, (2018), 272, 415-424.
S. Shrivastava, A. Kumar, N. Verma, BY Chen, CT. Chang. Electroanalysis (2020), 32, 1-10.
C. Gu, Q. Wang, L. Zhang, P. Yang, Y. Xie, J. Fei, Sensors and Actuators: B. Chemical,(2020), 305, 127478.
MI. Hossain, MA. Hasnat, Heliyon, (2023), 9, e19299.
Brønstad and Friestad, Aanalyst, (1976), 101, 820-824.
RF. Teofilo, EL. Reis, C. Reis, GA. Silva, LT. Kubota, Journal of Brazilian Chemical Society, (2004), 15, 865–871.
LAZ. Intriago, CG. Amorim, JMR. Díaz, AN. Araújo , MCBSM. Montenegro, Science of the Total Environment, (2021), 793, 148496.
S. Poorahong, C. Thammakhet, P. Thavarungkul, P. Kanatharana, Chemical Papers. (2015), 69, 385–394.
MDC. Aguirre, SE. Urreta, CG. Gomez, Sensors Actuators B: Chemicals, (2019), 284, 675–683.
C. Zhang, X. Liang, Y. Lu, H. Li, X. Xu, Sensors, (2020), 20, 4146.
M. Regiart, A. Kumar, JM. Gonçalves, GJ. Silva Junior, JC. Masini, L. Angnes, M. Bertotti, ChemElectroChem, (2020), 7, 1558–1566.
A. Habekost, Talanta, (2017), 162, 583–588.
FC. Moraes, LH. Mascaro, SAS. Machado, CMA. Brett, Electroanalysis, (2010), 22, 1586–1591.
PC. Oliveira, EM. Maximiano, PA. Oliveira, JS. Camargo, AR. Fiorucci, GJ. Arruda Journal of Environmental Science and Health, Part B. (2018), 53, 817-823.
JS. Santos, MS. Pontes, EF. Santiago, AR. Fiorucci, GJ. Arruda, Science of the Total Environment. (2020), 749, 142385.
Sarah Setznagl, Ivana Cesarino, International Journal of Environmental Analytical Chemistry,(2020), 1, 13.
JGY. Mbokana, GK. Dedzo, E. Ngameni, Applied Clay Science, (2020), 188, 105513.
A. Wong, DGD. Lima, PA. Ferreira, S. Khan, RABD. Silva, JLBD. Faria, MDPT. Sotomayor, Journal of Applied Electrochemistry, (2021), 51, 761-768.
K. Vikrant, DCW. Tsang, N. Raza, BS. Giri, D. Kukkar, KH, ACS Applied Material Interfaces, (2018), 10, 8797–8817.
Y. Cao, L. Wang, C. Shen, C. Wang, X. Hu, G. Wang, Sensors and Actuators B: Chemicals, (2019), 283, 487–494.
C. Gu, Q. Wang, L. Zhang, P. Yang, Y. Xie, J. Fei, Sensors and Actuators: B. Chemical, DOI: https://doi.org/10.1016/j.snb.2019.127478
BB. Prasad, D. Jauhari, MP. Tiwari, Biosensors and Bioelectronics, (2014), 59, 81–88.
C. Zhang, Y. She, T. Li, F. Zhao, M. Jin, Y. Guo, L. Zheng, S. Wang, F. Jin, H. Sha, H. Liu, J. Wang, Anal Bioanal Chem, (2017), 409, 7133–7144.
F. Zouaoui, S. Bourouina-Bacha, M. Bourouina, IA. Nemeir, HB. Halima, JG. Gonzalez, NEAE. Hassani, A. Alcacer, J. Bausells, NJ. Renault, N. Zine, A. Errachid, Sensors and Actuators B: Chemicals, (2020a), 309, 127753.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an open access article under the CC BY-NC-ND license Creative Commons Attribution-Noncommercial 4.0 International (CC BY-NC 4.0).