Status Sum Adjacency Energy of Graphs

Saroja Talwar & Harishchandra Ramane

1Research Scholar, Department of Mathematics, Karnatak University, Pavate Nagar, Dharwad – 580003 (India)
2Professor, Department of Mathematics, Karnatak University, Pavate Nagar, Dharwad – 580003 (India)

ARTICLE DETAILS

Article History
Published Online: 16 Aug 2019

Keywords
Status of a vertex, status sum adjacency matrix, eigenvalues, energy of a graph.

ABSTRACT

The status \(\sigma(u) \) of a point \(u \) in a connected graph \(G \) is the sum of the distances between \(u \) and all other vertices in \(G \). The status sum adjacency matrix of a graph \(G \) is defined as \(S_a(G) = [s_{ij}] \), where \(s_{ij} = \sigma(v_i) + \sigma(v_j) \), if \(v_i \) is adjacent to \(v_j \) and \(s_{ij} = 0 \), otherwise. The status sum adjacency energy is defined as the sum of the absolute values of the eigenvalues of \(S_a(G) \). In this paper we obtain bounds for the status sum adjacency energy of a graph.

1. Introduction

Let \(G \) be a simple, connected graph with \(n \) vertices and \(m \) edges. Let \(V(G) \) be the vertex set of \(G \) and \(E(G) \) be an edge set of \(G \). The edge joining the vertices \(u \) and \(v \) is denoted by \(uv \). The degree of a vertex \(u \) in \(G \) is the number of edges adjacent to it and is denoted by \(d(u) \). The distance between two vertices \(u \) and \(v \), denoted by \(d(u,v) \) is the length of shortest path joining them. The diameter of a graph \(G \), denoted by \(\text{diam}(G) \), is the maximum distance between any pair of vertices of \(G \). For graph theoretic terminology we refer the book [1].

The adjacency matrix of a graph \(G \) is an \(n \times n \) matrix \(A(G) = [a_{ij}] \), in which \(a_{ij} = 1 \) if the vertices \(v_i \) and \(v_j \) are adjacent and \(a_{ij} = 0 \), otherwise.

The status of a vertex \(u \) in a connected graph \(G \) is defined as [2]

\[
\sigma(u) = \sum_{v \in V(G)} d(u,v),
\]

where \(d(u,v) \) is the distance between the vertices \(u \) and \(v \) in \(G \) and \(V(G) \) is the vertex set of \(G \).

The status sum adjacency matrix of a connected graph \(G \) is defined as [3] \(S_a(G) = [s_{ij}] \), where \(s_{ij} = \sigma(v_i) + \sigma(v_j) \) if \(v_i \) and \(v_j \) are adjacent and \(s_{ij} = 0 \), otherwise. Let the eigenvalues of \(S_a(G) \) be denoted by \(x_1, x_2, \ldots, x_n \). As \(S_a(G) \) is a real symmetric matrix, its eigenvalues are real.

The first status connectivity index \(S_1(G) \) and second status connectivity index \(S_2(G) \) of a connected graph \(G \) are defined as [2]

\[
S_1(G) = \sum_{uv \in E(G)} [\sigma(u) + \sigma(v)]
\]

and

\[
S_2(G) = \sum_{uv \in E(G)} \sigma(u)\sigma(v)
\]

where \(E(G) \) is an edge set of \(G \). The first and second Zagreb indices of \(G \) are defined as [4]

\[
Z_1(G) = \sum_{uv \in E(G)} [d(u)^2 + d(v)^2]
\]

and

\[
Z_2(G) = \sum_{uv \in E(G)} d(u)d(v)
\]

where \(d(u) \) is the degree of a vertex \(u \) in \(G \). The forgotten index of \(G \) is defined as [4, 5]

\[
F(G) = \sum_{uv \in E(G)} [d(u)^2 + d(v)^2].
\]

If diameter of \(G \) is \(\text{diam}(G) \leq 2 \), then [2]

\[
S_1(G) = 4m(n-1) - Z_1(G)
\]

and

\[
S_2(G) = 4m(n-1)^2 - 2(n-1)Z_1(G) + Z_2(G).
\]

2. On eigenvalues of \(S_a(G) \)

Lemma 2.1. Let \(G \) be a connected graph with \(n \) vertices and \(m \) edges. Then the eigenvalues \(x_1, x_2, \ldots, x_n \) of \(S_a(G) \) satisfies

\[
\sum_{i=1}^{n} x_i = 0
\]

and

\[
\sum_{i=1}^{n} x_i^2 = 2 \sum_{uv \in E(G)} [\sigma(u) + \sigma(v)]^2 = 2M.
\]

Proof: \(\sum_{i=1}^{n} x_i = \text{trace}[S_a(G)] = \sum_{i=1}^{n} s_{ii} = 0. \)

\[
\sum_{i=1}^{n} x_i^2 = \text{trace}[S_a(G)^2] = 2 \sum_{uv \in E(G)} [\sigma(u) + \sigma(v)]^2.
\]

Lemma 2.2. Let \(G \) be a connected graph with \(n \) vertices and \(m \) edges. Let \(x_1, x_2, \ldots, x_n \) be the eigenvalues of \(S_a(G) \). If \(\text{diam}(G) \leq 2 \), then

\[
\sum_{i=1}^{n} x_i = 0
\]

and

\[
\sum_{i=1}^{n} x_i^2 = 16(n-1)[2m(n-1) - Z_1(G)] + 2F(G) + 4Z_2(G).
\]

Proof: \(\sum_{i=1}^{n} x_i = 0 \) for any vertex \(u \) of \(G \),

\[
\sigma(u) = 2n - 2 - d(u).
\]

By Lemma 2.1,
\[
\sum_{i=1}^{n} x_i^2 = 2 \sum_{u,v \in E(G)} [\sigma(u) + \sigma(v)]^2 = 2 \sum_{u,v \in E(G)} [4n - 4 - d(u) - d(v)]^2
\]
\[
= 2 \sum_{u,v \in E(G)} [(4n - 4) - (4n - 4)(d(u) + d(v)) + (d(u) + d(v))^2]
\]
\[
= 16(n - 1)[2m(n - 1) - Z_1(G)] + 2F(G) + 4Z_2(G).
\]

Lemma 2.3. If \((a_1, a_2, \ldots, a_n)\) and \((b_1, b_2, \ldots, b_n)\) are \(n\)-vectors, then Cauchy-Schwartz inequality is
\[
\left(\sum_{i=1}^{n} a_i b_i\right)^2 \leq \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right).
\]
(13)

1. **Bounds for energy of status sum adjacency energy**

The status sum adjacency energy \(S_E(G)\) of a connected graph \(G\) is defined as the sum of the absolute values of the eigenvalues of \(S_d(G)\). That is if \(x_1, x_2, \ldots, x_n\) are the eigenvalues of \(S_d(G)\), then
\[
S_E(G) = \sum_{i=1}^{n} |x_i|.
\]
(14)

The Eq. (14) is analogous to the ordinary graph energy defined as the sum of the absolute values of the eigenvalues of the adjacency matrix of \(G\) [6, 7].

Theorem 3.1. Let \(G\) be a connected graph with \(n\) vertices. Then
\[
\sqrt{2M} \leq S_E(G) \leq \sqrt{2nM},
\]
where
\[
M = \sum_{u,v \in E(G)} [\sigma(u) + \sigma(v)]^2.
\]

Proof. Upper bound: Choosing \(a_i = 1\) and \(b_i = |x_i|\) for \(i = 1, 2, \ldots, n\) in Lemma 2.3 we get,
\[
\left(\sum_{i=1}^{n} a_i b_i\right)^2 \leq \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right) = 2nM
\]
\[
(SE_E(G))^2 \leq 2nM
\]
\[
S_E(G) \leq \sqrt{2nM}.
\]
Lowe bound:
\[
(SE_E(G))^2 = \left(\sum_{i=1}^{n} |x_i|\right)^2 \geq \sum_{i=1}^{n} x_i^2 = 2M.
\]
Therefore
\[
S_E(G) \geq \sqrt{2M}.
\]

Corollary 3.2. Let \(G\) be a graph with \(n\) vertices and \(m\) edges. If \(\text{diam}(G) \leq 2\), then
\[
S_E(G) \geq \sqrt{16(n - 1)[2m(n - 1) - Z_1(G)] + 2F(G) + 4Z_2(G)}.
\]

Proof. If \(\text{diam}(G) \leq 2\), then by Lemma 2.2,
\[
2M = \sum_{i=1}^{n} x_i^2 = 16(n - 1)[2m(n - 1) - Z_1(G)] + 2F(G) + 4Z_2(G).
\]

Therefore by Theorem 3.1, result follows.

Theorem 3.3. Let \(G\) be a connected graph with \(n\) vertices. Then
\[
S_E(G) \geq \sqrt{2M + n(n - 1) - \text{det}(S_d(G))^{1/n}}
\]
where
\[
M = \sum_{u,v \in E(G)} [\sigma(u) + \sigma(v)]^2.
\]

Proof. We follow the same procedure used in [8]. Consider
\[
(SE_E(G))^2 = \left(\sum_{i=1}^{n} |x_i|\right)^2
\]
\[
= \sum_{i=1}^{n} x_i^2 + 2 \sum_{i<j} |x_i| |x_j|
\]
\[
= 2M + \sum_{i<j} |x_i| |x_j|
\]
(15)

As the arithmetic mean of a set of positive number is greater than or equal to their geometric mean, we have
\[
\frac{1}{n(n-1)} \sum_{i<j} |x_i| |x_j| \geq \left[\prod_{i<j} |x_i| |x_j|\right]^{1/(n(n-1))}
\]
\[
= \left[\left(\prod_{i<j} |x_i| |x_j|\right)^{n(n-1)}\right]^{1/(n(n-1))}
\]
\[
= \left[\prod_{i<j} |x_i| |x_j|\right]^{2/n^n} \geq |\text{det}(S_d(G))|^{1/n}.
\]
(16)

From Eqs. (15) and (16) we get,
\[
S_E(G) \geq \sqrt{2M + n(n - 1) - |\text{det}(S_d(G))|^{2/n}}.
\]

3. **Conclusion**

In this work we have obtained some properties of the eigenvalues of the status sum adjacency matrix and bounds for the status sum adjacency energy.

Acknowledgement: The first author SYT is thankful to Ministry of Tribal Affairs, Govt. of India, New Delhi for awarding National Fellowship for Higher Education No. 201718-NFST-KAR-01182. The second author HSR is thankful to University Grants Commission (UGC), New Delhi for the support through grant under UGC-SAP DRS-III, 2016-2021: F.5103/DRS-III/2016 (SAP-I).
References