Tunable Fluorescence and Functionalization of Quantum Dots for Biomedical Imaging: Physicochemical Principles, Simulation and Biocompatibility Insights

Authors

  • Dr. Badrish Badoni Asst. Prof. Department of physics, Bal Ganga Degree College Sendul Kemar, Sri Dev Suman Uttarakhand University (SDSUV), Uttarakhand-249155, India
  • Dr. Yogesh Prasad Asst. Prof. Department of Physics Veer Shaheed Keshri Chand P.G. College Vikashnagar, Sri Dev Suman Uttarakhand University (SDSUV), Uttarakhand, India

DOI:

https://doi.org/10.31305/rrijm.2025.v10.n7.008

Keywords:

Quantum Dots, Fluorescence, Quantum Confinement, Brus Equation, FRET Biosensing, Biocompatibility, Nanomedicine

Abstract

Quantum dots (QDs), owing to their tunable fluorescence, high quantum yield, and excellent photostability, have emerged as promising nanomaterials in biomedical imaging. This review explores the physicochemical principles driving QD behavior—quantum confinement effects and Brus equation modeling. Surface functionalization methods, including ligand exchange and bioconjugation, are evaluated for enhancing water solubility and biocompatibility. Simulations of size-dependent bandgap in CdSe QDs are correlated with theoretical predictions. Applications in Förster Resonance Energy Transfer (FRET) biosensing and toxicity challenges of cadmium-based QDs are discussed. Biocompatible alternatives such as carbon, perovskite, and silicon QDs are compared and AI-driven QD design implications are assessed. The review highlights QDs’ potential in developing next-generation nanomedicine tools applicable in mountainous and rural settings.

References

Lv, Y., Zhang,L., Wu,R. et al. (2024). Recent progress on eco-friendly quantum dots for bioimaging and diagnostics. Nano Res. 17, 10309-10331. https://doi.org/10.1007/s12274-024-6926-5

Brus, L.E. (1984). Electron-Electron and Electron–hole interactions in small semiconductor crystallites. The Size Dependence of Lowest Excited Electronic State, Journal of Chemical Physics, 80, 4403-4409. https://doi.org/10.1063/1.447218

Li, J., & Zhu, J.-J. (2013),Quantum dots for fluorescent biosensing and bio-imaging applications, Analyst, 138(9), 2506-2515. https://doi.org/10.1039/C3AN36705C

Chen, Y., et al. (2023). Quantum dot-based imaging probes: synthesis and applications. Small, 19(8), 2206942. https://doi.org/10.1002/smll.202206942

Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271(5251), 933-937. https://doi.org/10.1126/science.271.5251.933

Karwacki, F., et al. (2023). Theoretical modeling of QDs and their optical properties. Journal of Physical Chemistry C, 127(15), 4958-4971. https://doi.org/10.1021/acs.jpcc.3c01458

Reshma, P., et al. (2022). Quantum dots for multiplexed bioimaging applications. Nano Letters, 22(12), 4821-4834. https://doi.org/10.1021/acs.nanolett.2c01394

Wang, C., et al. (2021). Photostability of quantum dots in biological environments. Chemical Reviews, 121(17), 10544-10589. https://doi.org/10.1021/acs.chemrev.0c01345

Wu, H., et al. (2023). Quantum dots for live-cell imaging. Bioconjugate Chemistry, 34(3), 498-510. https://doi.org/10.1021/acs.bioconjchem.2c00756

Ghosh, S., et al. (2022). Fluorescence properties and imaging potential of QDs. Langmuir, 38(5), 2345-2356. https://doi.org/10.1021/acs.langmuir.1c09932

Zhang, M., et al. (2023). Quantum dots for in vivo imaging: recent advances. Advanced Healthcare Materials, 12(7), 2300195. https://doi.org/10.1002/adhm.202300195

Shen, X., et al. (2021). Functionalized quantum dots for targeted imaging. Biomaterials, 276, 120988. https://doi.org/10.1016/j.biomaterials.2021.120988

Xu, W., et al. (2023). Near infrared quantum dots for deep tissue imaging. Nature Nanotechnology, 18(3), 320-332. https://doi.org/10.1038/s41565-023

Huang, J., et al. (2023), Bioengineered quantum dots for therapeutic applications, ACS Applied Bio Materials, 6(2), 1054-1066, https://doi.org/10.1021/acsabm.2c01326

Roy, P., et al. (2022), Photo-luminescent QDs for drug delivery, Advanced Drug Delivery Reviews, 180, 114063. https://doi.org/10.1016/j.addr.2022.114063

Jiang, S., et al. (2022). Quantum dot-based FRET biosensors for sensitive detection of biomolecules. Biosensors and Bioelectronics, 197, 113767. https://doi.org/10.1016/j.bios.2021.113767

Wang, Y., et al. (2023). Toxicity assessment of cadmium-based quantum dots in biological systems. Environmental Science & Technology, 57(5), 2341-2352. https://doi.org/10.1021/acs.est.2c07890

Luo, Z., et al. (2022). Carbon quantum dots: synthesis, properties, and applications in biomedicine. Journal of Materials Chemistry B, 10(15), 2675-2696. https://doi.org/10.1039/D1TB02712A

Hasanirokh, K., et al. (2023). Computational modeling of quantum dot interactions with biological systems. Journal of Computational Chemistry, 44(2), 123-135. https://doi.org/10.1002/jcc.26789

Zhang, Y., et al. (2024). Finite element analysis of quantum dot-based biosensors. Sensors and Actuators B: Chemical, 350, 130877. https://doi.org/10.1016/j.snb.2023.130877

Wu, L., et al. (2024). Computational modeling of quantum dot toxicity. Nano Today, 45, 101250. https://doi.org/10.1016/j.nantod.2023.101250

Liu et al. (2024). One-pot synthesis of Cu:InP multishell quantum dots for near infrared light emitting devices. Nano Research,17,10655-10660. https://doi.org/10.1007/s12274-024-6906-0

Lim, S.Y., Shen,W., & Gao, Z. (2015). Carbon quantum dots and their applications. Chemical Society Reviews, 44(1), 362-381. https://doi.org/10.1039/C4CS00269E

Tang, L., Luo, Y., Sun, G., Jiang, Y., Luo, W., Yue, X., Zhang, Z., Zhang, C., & Hu, J. (2023). Computational investigation of graphene quantum dot and tridentate Au(III) complex composites. New Journal of Chemistry, 47(30), 14420–14428. https://doi.org/10.1039/D3NJ02612D

Das, S., et al. (2023).Carbon quantum dots in bioimaging and biomedicines, Frontiers in Bioengineering and Biotechnology, 11, 1333752. https://doi.org/10.3389/fbioe.2023.1333752023

“Brus equation,” Wikipedia, The Free Encyclopedia, Jul. 11, 2024. [Online]. Available: https://en.wikipedia.org/wiki/Brus_equation

E. O. Chukwuocha, M. C. Onyeaju, and T. S. T. Harry, "Theoretical studies on the effect of confinement on quantum dots using the Brus equation," World Journal of Condensed Matter Physics, vol. 2, no. 2, pp. 96–100, 2012, doi: https://doi.org/10.4236/wjcmp.2012.22017

K. F. Chou and A. M. Dennis, “Förster resonance energy transfer between quantum dot donors and quantum dot acceptors,” Sensors, vol. 15, no. 6, pp. 13288–13325, Jun. 5, 2015, doi: https://doi.org/10.3390/s150613288

Downloads

Published

12-07-2025

How to Cite

Badoni, B., & Prasad, Y. (2025). Tunable Fluorescence and Functionalization of Quantum Dots for Biomedical Imaging: Physicochemical Principles, Simulation and Biocompatibility Insights. RESEARCH REVIEW International Journal of Multidisciplinary, 10(7), 63–71. https://doi.org/10.31305/rrijm.2025.v10.n7.008