Stable Polymer Formation Using Temperature as a Catalyst: A Comprehensive Study
DOI:
https://doi.org/10.31305/rrijm.2023.v08.n02.023Keywords:
Temperature-driven polymerization, stability, sustainability, catalyst alternative, environmental impactAbstract
Polymerization processes are crucial in the production of various materials with diverse applications. This study explores the innovative approach of utilizing temperature as a catalyst in polymer formation to enhance stability and control. The research aims to understand the challenges in traditional polymerization methods, define the problem, outline the study objectives, and present conclusions drawn from the investigation. This study explores temperature-driven polymerization as an innovative catalyst for stable polymer formation, aiming to replace traditional chemical catalysts. By investigating its feasibility, stability, control, and environmental impact, this research contributes to sustainable polymer synthesis. The findings reveal temperature's potential as a catalyst alternative for environmentally conscious polymerization processes.
References
Abellan, P., Woehl, T. J., Parent, L. R., Browning, N. D., Evans, J. E., & Arslan, I. (2014). Factors influencing quantitative liquid (scanning) transmission electron microscopy. Chem. Commun., 50(38), 4873–4880. https://doi.org/10.1039/c3cc48479c
Benbow, N. L., Webber, J. L., Pawliszak, P., Sebben, D. A., Ho, T. T. M., Vongsvivut, J., Tobin, M. J., Krasowska, M., & Beattie, D. A. (2018). A Novel Soft Contact Piezo-Controlled Liquid Cell for Probing Polymer Films under Confinement using Synchrotron FTIR Microspectroscopy. Scientific Reports, 8(1). https://doi.org/10.1038/S41598-018-34673-4
Canning, S. L., Smith, G. N., & Armes, S. P. (2016). A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules, 49(6), 1985–2001. https://doi.org/10.1021/acs.macromol.5b02602
Jin, B., Sushko, M. L., Liu, Z., Jin, C., & Tang, R. (2018). In situ liquid cell TEM reveals bridge-induced contact and fusion of Au nanocrystals in aqueous solution. Nano Lett., 18(10), 6551–6556. https://doi.org/10.1021/acs.nanolett.8b03139
Liu, F., Brady, M. A., & Wang, C. (2016). Resonant soft X-ray scattering for polymer materials. Eur. Polym. J., 81, 555–568. https://doi.org/10.1016/j.eurpolymj.2016.04.014
McAfee, T., Ferron, T., Cordova, I. A., Pickett, P. D., McCormick, C. L., Wang, C., & Collins, B. A. (2021). Label-free characterization of organic nanocarriers reveals persistent single molecule cores for hydrocarbon sequestration. Nat. Commun., 12(1). https://doi.org/10.1038/s41467-021-23382-8
Patterson, J. P., Robin, M. P., Chassenieux, C., Colombani, O., & O’Reilly, R. K. (2014). The analysis of solution self-assembled polymeric nanomaterials. Chem. Soc. Rev., 43(8), 2412–2425. https://doi.org/10.1039/c3cs60454c
Wang, C., Lee, D. H., Hexemer, A., Kim, M. I., Zhao, W., Hasegawa, H., Ade, H., & Russell, T. P. (2011). Defining the nanostructured morphology of triblock copolymers using resonant soft X-ray scattering. Nano Lett., 11(9), 3906–3911. https://doi.org/10.1021/nl2020526
Wrede, O., Reimann, Y., Lülsdorf, S., Emmrich, D., Schneider, K., Schmid, A. J., Zauser, D., Hannappel, Y., Beyer, A., Schweins, R., Gölzhäuser, A., Hellweg, T., & Sottmann, T. (2018). Volume phase transition kinetics of smart N-n-propylacrylamide microgels studied by time-resolved pressure jump small angle neutron scattering. Scientific Reports, 8(1). https://doi.org/10.1038/S41598-018-31976-4
Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P., & Dahmen, U. (2009). Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9(6), 2460–2465. https://doi.org/10.1021/nl9012369
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an open access article under the CC BY-NC-ND license Creative Commons Attribution-Noncommercial 4.0 International (CC BY-NC 4.0).