A Review on the Synthesis of Metal-Organic Frameworks: Conventional, Unconventional, and Alternative Methods
DOI:
https://doi.org/10.31305/rrijm.2021.v06.i12.033Keywords:
Metal Organic Frameworks, Hydrothermal Synthesis, Sonochemical Method of Synthesis, Conventional Method of SynthesisAbstract
Over the past two decades, metal-organic frameworks (MOFs) have attracted a lot of attention due to their large surface area, tunable porosity, and several uses in drug delivery, gas storage, catalysis, and sensing. The synthesis process, which is crucial to their formation, has a significant impact on the final structural and functional characteristics of these MOFs. Conventional (ionothermal and hydro/solvothermal), unconventional (mechanochemical), and alternative (sonochemical, electrochemical, microwave-assisted, and slow evaporation/diffusion) synthesis methodologies for MOFs are all thoroughly summarized in this review. The mechanism, benefits, drawbacks, and effects on MOF characteristics of each of these approaches are examined. The study aims to guide researchers in selecting appropriate synthetic techniques for certain applications and provide future prospects for scalable and effective MOF manufacture.
References
Wang, Z.; Chen, G.; Ding, K., Chem. Rev. 2009, 109, 322-359.
Li, J.-R.; Kuppler, R.J.; Zhou, H.C., Chem. Soc. Rev. 2009, 38,1477-1504.
Férey, G., Chem. Soc. Rev. 2008, 37, 191-214.
McEnaney, B.; Alain, E.; Yin, Y.F.; Mays, T.J. NATO Science Series; Springer: Dordrecht, The Netherlands, 2001, 374, 295.
Borns, D.J. Theory and Applications of Transport in Porous Media; Hassanizadeh, S.M., Ed.; Springer: Dordrecht, The Netherlands, 2006; p. 407.
Morris, R.E.; Wheatley, P.S., Angew. Chem. Int. Ed. Engl. 2008, 47, 4966-4981.
Manocha, S.M. Porous carbons. Sadhana 2003, 28, 335-348.
Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae H. K.; Eddaoudi, M; Kim, J., Nature, 2003, 423, 705 - 714.
Furukawa, H.; Cordova K. E.; O’Keeffe, M.; Yaghi, O.M., Science, 2013,341, 1230444.
Férey, G. Chemical Society Reviews., 2008, 37, 191-214.
Li, J.R.; Sculley, J.; Zhou, H.C., Chemical reviews, 2012, 112, 869-932.
Haque, E.; Lee, J. E.; Jang, I. T.; Hwang, Y. K.; Chang, J. S.; Jegal, J.; Jhung, S. H., J. Hazard. Mater., 2010, 181, 535-542.
Bhattacharjee, S.; Yang, D. A.; Ahn, W. S., Chem. Commun., 2011, 47, 3637-3639.
Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T., Chemical reviews, 2012,112, 1105-1125.
Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O.M., Science, 2002, 295, 469-472.
Kitagawa, S.; Kitaura, R.; Noro, S.I., Angewandte Chemie International Edition, 2004, 43, 2334-2375.
Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I., Science, 2005, 309, 2040-2042.
Antonietti, M.; Kuang, D.; Smarsly, B.; Zhou, Y., Angewandte Chemie International Edition, 2004, 43, 4988-4992.
Lin, Z.; Wragg, D. S.; Warren, J. E.; Morris, R. E., J. Am. Chem. Soc. 2007, 129, 10334–10335
Ajoyan, Z.; Marino, P.; Howarth, A. J., CrystEngComm., 2018, 20, 5899-5912.
Stolar, T.; Užarević, K., CrystEngComm., 2020, 22, 4511 - 4525.
Gedanken, Ultrason. Sonochem., 2004, 11, 47-55.
Suslick, K. S.; Hammerton, D. A.; Cline, R. E., J. Am. Chem. Soc., 1986, 108, 5641-5642.
Suslick, K. S.; Choe, S. B.; Cichowlas, A. A.; Grinstaff, M.W., Nature, 1991, 353, 414-416.
Mueller, U., Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J., J. Mater. Chem., 2006, 16, 626-636.
Li, Z. Q.; Qiu, L.G.; Su, T.; Wu, Y.; Wang, W.; Wu, Z.Y.; Jiang, X., Mater. Lett., 2009, 63, 78-80.
Jhung, S. H.; Chang, J. S., Hwang, J. S.; Park, S. E., Micropor. Mesopor. Mater., 2003, 64, 33-39.
Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M., Nature, 1999, 402, 276-279.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an open access article under the CC BY-NC-ND license Creative Commons Attribution-Noncommercial 4.0 International (CC BY-NC 4.0).